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ABSTRACT

The classical solution for cavitating flow past a curved obstacle leaves

the position of the separation points undetermined. It is shown that this

degeneracy is removed by introducing surface tension. A unique solution is

obtained by requiring the flow to leave the obstacle tangentially. As the

surface tension tends to zero this solution tends to the classical solution

satisfying the Brillouin-Villat condition. A perturbation solution for small

values of the surface tension is derived. Graphs of the results for the

cavitating flow past a circular cylinder are presented.
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SIGNIFICANCE AND EXPLANATION

The classical Helmholtz-Kirchhoff solution for cavitating flow past a

flat plate yields infinite curvature of the free-surface at the edges of the

plate. Ackerberg (1975) and Cumberbatch and Norbury (1979) attempted to

remove this singularity in the curvature by including surface tension.

Although they obtain a solution in the neighborhood of the separation point

they did not match it with any acceptable outer solution. The problem was

solved by Vanden Broeck (1981) who provided conclusive analytical and numer-

ical evidence that the slope is not continuous at the separation points. Thus

the inclusion of surface tension in the Helmholtz-Kirchhoff solution does not

remove the infinite curvature singularity at the separation points. On the

contrary it makes the problem more singular by introducing a discontinuity in

slope and therefore an infinite velocity at these points.

In the present paper we generalize Vanden Broeck's results to the cavi-

tating flow past a curved obstacle. (See Figure 1.) The position of the

separation point may be either fixed if it is at a pointed corner of the body,

or free if it is at a certain location of a smoothly curved obstacle. The

classical solution without surface tension is computed numerically by col-

location. This solution is then used to construct an asymptotic solution for

small values of the surface tension. It is found that for most positions of

the separation point, the slope is not continuous at the separation points.

The velocity is infinite or equal to zero there. However, for a given value

of the surface tension there exists a particular position of the separation

points for which the slope is continuous. This solution tends to the clas-

sical solution satisfying the Brillouin-Villat condition as the surface

tension tends to zero. Graphs of the results for the flow past a circular

cylinder are included.

The results presented are obtained from a local solution in the vicinity

of the separation point. They are therefore useful for any problem in which a

free streamline separates from a rigid obstacle.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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THE INFLUENCE OF SURFACE TENSION ON CAVITATING FLOW

PAST A CURVED OBSTACLE

Jean-Marc Vanden Broeck

1. Introduction.

In recent years important progress has been achieved in the understanding

of the influence of surface tension on cavitating flow past a flat plate. The

classical Helmholtz-Kirchhoff solution yields infinite curvature of the free

surface at the edges of the plate. Ackerberg (1975) constructed an asymptotic

solution for small values of the surface tension in which the slope and the

curvature of the free surface at the edges are both equal to those of the

plate. Ackerberg's solution contains capillary waves downstream. Cumberbatch

and Norbury (1979) observed that these waves are not physically acceptable be-

cause they require a supply of energy from infinity. They suggested that

solutions without waves could be obtained by forcing the slope of the free

surface at the edges to be equal to the slope of the plate and allowing the

curvature to be different from zero at the edges, Although they obtained a

local solution, they did not succeed in matching it with any outer solution.

The problem was solved by Vanden Broeck (1981) who provided conclusive

analytical and numerical evidence that the slope is not continuous at the

separation points. Both velocity and curvature are infinite there.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant No. MCS-7927062, Mod. i.



In the present paper we generalize Vanden Broeck's results to the

cavitating flow past a curved obstacle (see Figure 1). The position of the

separation point may be either fixed if it is at a pointed corner of the body,

or free if it is at a certain location of a smoothly curved obstacle. An

example of fixed detachment is provided by the cavitating flow past a flat

plate in which the flow leaves the plate at the edges. Similarly the flow

sketched in Figure I corresponds to fixed detachment if the obstacle is cut

along the straight line AB. In the case of free detachment the classical

solution leaves the position of the separation points A and B undeter-

mined. This degeneracy is usually resolved by imposing the Brillouin-Villat

condition which requires the curvature of the free surface to be finite at the

separation points. (Birkhoff and Zarantonello (1957)).

The problem is formulated in Section 2 and the classical solution without

surface tension is computed numerically in Section 3. The scheme is similar

in philosophy if not in details to the scheme derived by Brodetsky (1923) and

later extended by Birkhoff et. al. (1953, 1954). Explicit results are

presented for the cavitating flow past a circular cylinder.

In Section 4 the numerical solution of Section 3 is used to construct an

asymptotic solution for small values of the surface tension. It is found that

for most positions of the separation points, the slope is not continuous at

A and B. The velocity is infinite or equal to zero there. However for a

given value of the surface tension there exists a particular position of the

separation points A and B for which the slope is continuous at A and

B. This solution tends to the classical solution satisfying the Brillouin-

Villat condition as the surface tension tends to zero.

-2-



2. Formulation.

We consider the cavitating flow past a curved obstacle (see Figure 1).

We denote by L a typical dimension of the obstacle. At infinity we have a

flow with constant velocity U. The fluid is assumed to be inviscid and

incompressible. We restrict our attention to obstacles which are symmetrical

with respect to the direction of the velocity at infinity. Flows past non-

symmetrical obstacles can be treated similarly. It is convenient to introduce

dimensionless variables by choosing L as the unit length and U as the unit

velocity.

We introduce the dimensionless potential *b and stream function *b.

The constant b is chosen such that 0 = 1 at the separation points.

Without loss of generality we choose * = 0 at x = y = 0. The free

surface, the obstacle and the negative x-axis are portions of the stream-

line 0 = 0.

We denote the complex velocity by u - iv and we define the function

0- i by the relation

u - iv = e . (2.1)

We shall seek r - i as an analytic function of f * +i# in the half

plane * 4 0. The complex potential plane is sketched in Figure 2. At

infinity we require the velocity to be unity in the x-direction so that the

function T - i8 vanishes at infinity in view of (2.1).

On the surface of the cavity the Bernoulli equation and the pressure

jump due to surface tension yield

1/2q
2 -_T 1/2 U 

2  (2.2)
P

Here q is the flow speed, K the curvature of the cavity surface counted

positive when the center of curvature lies inside the fluid regions, T the

surface tension and P the density. In dimensionless variables this

-3-
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becomes (see Ackerberg (1975) for details)

e e a 2"7 - " = e - 1 ) , 1 < < " .( 2 .3 ) .

Here a is the Weber number defined by
p2L
P L (2.4)
T

The symmetry of the problem and the kinematic condition on the obstacle

yield

e(#) = o, =0, < o (2.5)

F[x(,y(0) 0, * = 0, 0 < * < 1. (2.6)

Here F(x,y) = 0 is the equation of the shape of the obstacle and the

functions e(f), x(f) and y(#) denote respectively 0(#,0-), x(#,0-) and

y(4,0-).

This completes the formulation ofthe problem of determining the function

T - i8 and the constant b. For each value of a, T - i0 must be analytic

in the half plane I ( 0 and satisfy the boundary conditions (2.3), (2.5) and

(2.6).
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3. Solution without surface tension.

When surface tension is neglected, the Weber number is infinite and the

condition (2.3) reduces to the free-streamline condition T = 0.

We define the new variable t by the transformation

- (t - (3.1)

The problem in the complex plane t is illustrated in Figure 3. Following

Brodetsky (1923) we introduce the function Q'(t) by the relation

Alog 1+t
T - i9 = - 1-t-'(t) (3.2)

where the angle A is defined in Figure 1. The conditions (2.3) and (2.5)

show that SP(t) can be expressed in the form of a Taylor expansion in odd

powers of t. Hence

T log 1+t 2n-1. (3.3)

n=1
The function (3.3) satisfy the conditions (2.3) and (2.5). The coef-

ficients An have to be determined to satisfy the condition (2.6) on the
jo

surface A C B of the obstacle. We use the notation t = r e so that

points on A C B are given by r - 1, - 4 a 4 w . Using (3.1) and (2.1)

2 2

we have
ax -T v i
x= b sin 20 e cos e, p = I, - a ( o - (3.4)

3 =2 2

X- b sin 20 e sin 1, p = 1, - - 0 4 - . (3.5)aui 2 2

We solve the problem approximately by truncating the infinite series in

(3.3) after N terms. We find the N coefficients An and the constant

b by a hybrid method involving collocation and finite differences. Substi-

tuting t ei  into (3.3) we have

A N
3(o) =- + I An sin((2n-1)C] (3.6)

n=i

T(O) - - n A cos[(2n-1)OI (3.7)

V 1-coso n=1 n
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We now introduce the N mesh points

S= --- I , I = 1,---,N (3.8)
I 2N

and the N intermediate mesh points

am 2N (I -), 1 = 1,"*,N. (3.9)

Using (3.4) - (3.7) and (3.9) we obtain Land in terms of

the coefficients An and the constant b. These expressions enable us to

evaluate x(0 I ) and y(0) by the trapezoidal rule. Then (2.6) provides

N algebraic equations for the N+I unknowns An  and b, namely

Ftx(O ),y(0 )] = 0, I = I,...,N. (3.10)

The last equation is obtained by specifying the abscissa w of the separation

point A. Thus

x(- ) = w. (3.11)

The system (3.10)-(3.11) is easily solved by Newton's method. Explicit

computations were performed for the cavitating flow past a circular cylinder.

The unit length L was chosen as the radius of the cylinder. The scheme

converges rapidly and the solutions obtained were found to agree with the

numerical results given by Birkhoff and Zarantonello (1957).

Profiles of the cavity for various values of the angular position Y of

the separation points are presented in Figure 4. For Y < * 0 550 the free

surface enters the body. These solutions are acceptable if the body is cut

along the straight line AB. For y > Y' 1240, the free surfaces cross

over and the corresponding solutions are not physically acceptable. Phys-

ically acceptable solutions for ' > y can be obtained by using the method

presented by Vanden-Broeck and Keller (1980) to prevent overlapping in capil-

lary waves of large amplitude. These solutions are found to be the cupsed

cavities considered before by Southwell and Vaisey (1946), Lighthill (1949)

and others (see Figure 4). The pressure in the cavity is found as part of the

-9-
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solution. Similarly in the work of Vanden-Broeck and Keller (1980) the

pressure in the trapped bubble was found as part of the solution. As Y

tends to Y the pressure in the cavity tends to zero. As Y tends to

1800 the cavity shrinks to a point, and the solution reduces to the

classical potential flow past a circle. Thus the family of cupsed cavities is

the physical continuation for Y > Y of the family of open cavities.

The curvature of the free surface in the neighborhood of the separation

point A is given by the formula (Brodetsky (1923))

b 1/2 C( - 1) -  or 1 (3.12)

where
C bl 1 b 2 N
C 2 (-) n (2n-1)A . (3.13)

nV ~ n=1n

These formula are true for the cavitating flow past any curved obstacle.

A graph of C versus the angular position of Y of the separation

points for the flow past a circular cylinder is shown in Figure 5. The

constant C vanishes for Y = Y . Thus (3.12) shows that the curvature at

the separation points is infinite unless y = y * If we impose the Brillouin-

Villat condition, the problem with free detachment has a unique solution

corresponding to Y = YV

-11-
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4. Perturbation solution for small values of the surface tension.

We seek a solution in the vicinity of the separation point A. Following

Ackerberg (1975) we introduce the following scaling of the variables

f = a(bf - b) (4.1)

* * a 1/2 (T - iO - i- + iy). (4.2)
2

The function T satisfies Laplace's equation in the lower half plane

1 (0. Thus

2* 2* ,
+a = 0 in < 0. (4.3)

a,*
2  ',*

2

The boundary conditions (2.3) and (2.6) linearize in the limit a + - so that

the boundary conditions on i = 0 are (see Ackerberg (1975) for details)
aT
at 0 on =0 for < 0 (4.4)

3T = on =0 for > 0. (4.5)

Relation (3.12) gives the behavior
* * 1/2

T IM C(f ) 1/ as If* +. (4.6)

Cumberbatch and Norbury (1979) noticed that the problem (4.3) - (4.5) had

been treated by Friedrichs and Levy (1948). The solution of (4.3) - (4.6) not

containing waves and having the weakest singularity at A is given on the

free surface by

C2() In- - (4.7)

t () n . (4.8)
2/

The leading order terms in (4.7) and (4.8) correspond to flow past a corner of

angle

6 /2,- . (4.9)

However the solution (4.7), (4.8) is not valid near I = because T is

unbounded at 1 1. Following Vanden-Broeck (1981) we seek a local solution

-13-



which corresponds to a flow past a corner of angle 6. Thus we write
T 1)wff/(21-6) - 1

e ~ E(O - 1 ) (4.10)

Here E is a constant to be determined as part of the solution. Substituting

(4.10) into (2.3) we have

8 ab E(O- 1 1/(21-)- - E-t (* - 1)1-w/(2w-6)1 . (4.11)

Matching (4.11) and (4.7) we find

E = 1. (4.12)

Thus we have succeeded in matching the solution (4.7), (4.8) with a local

solution corresponding to the flow past a corner of angle 6. In particular

these results imply that

e (1) W C 2. (4.13)

Relation (4.9) shows that 6 > w for C < 0 and 6 < N for C > 0.

Therefore the velocity at the separation points is infinite for C < 0 and

equal to zero for C > 0.

Graphs of 0(0) versus a-2 for the circular cylinder are shown in
*

Figure 6. The velocity at the separation points is infinite for y < Y and

equal to zero for Y > Y

Although we did only compute an asymptotic solution for a large, we

have every reason to believe that a solution exists for all values of a. As

a tends to zero, the free surfaces must approach two horizontal straight

lines. Therefore

lim 6(1) = 0. (4.14)
a 0

Providing 8(0) is a continuous function of a, Figure 6 and (4.14) imply

the existence for each value of Y < Y < 900 of one value of 0 < a < - for

which , - -- + Y. We describe this relation between a and Y by theS 2

function

Y - g(a). (4.15)

-14-
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This result can be reformulated as follows. For each value of the Weber

number a there exists an angular position Y = g(a) of the separation

points for which the flow leaves the obstacle tangentially.

As a tends to zero the free surfaces tend to two horizontal straight

lines. This solution leaves the cylinder tangentially only if Y = 900.

Therefore

lia g(a) - 900. (4.16)
a+0

As a tends to infinity, the solution is described by the asymptotic

solution (4.7) and (4.8). This solution leaves the obstacle tangentially only

if C = 0 (see formula (4.9)). Therefore Figure 6 implies

*

lim g(a) - y . (4.17)
a+O

Relation (4.17) shows that the family of solution defined by (4.15) tends

to the classical solution satisfying the Brillouin-Villat condition, as

a +

-16-
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